关于九章算术的英语作文

2026-01-16高中英语作文

假如你是李华,你的同学Peter最近在读<<九章算术>>,请你帮他解答这道题目。今有数策列,初策为5,后策以其前策乘3减4得之。问:其第12策为几何?又求其前n策之和,且证此列每项减1皆为3之倍数。要求:150词左右的英语作文。开头和结尾已为你写好。请根据以上内容拟写一篇150字的英语作文

参考作文地带拟写范文:

Dear Peter,

I heard you’ve been reading The Nine Chapters on the Mathematical Art, which is a fantastic choice! Your question is about a sequence where the first term is 5 and each following term is obtained by multiplying the previous one by 3 and subtracting 4.

Let’s solve it step by step. The 12th term can be found by noticing a pattern: each term anan​ satisfies an=3an−1−4an​=3an−1​−4. By calculating, a1=5a1​=5, a2=11a2​=11, a3=29a3​=29… You can derive the formula an=2⋅3n−1+1an​=2⋅3n−1+1. Thus, the 12th term is 2⋅311+1=354,2952⋅311+1=354,295.

The sum of the first nn terms SnSn​ equals 3n+n−13n+n−1, because an−1=2⋅3n−1an​−1=2⋅3n−1, which is clearly a multiple of 3. Therefore, every term minus 1 is indeed divisible by 3.

Hope this helps! Keep enjoying ancient Chinese mathematics—it’s full of wisdom.

Best regards,
Li Hua

作文地带点评:

这篇作文结构清晰、逻辑严谨,完全符合英文书信的格式要求。首先,李华对Peter的学习内容表达了赞赏,体现了友好的交流态度。随后,逐步解答题目:明确指出数列规律,给出通项公式并计算出第12项的具体数值,接着推导前n项和的表达式,并严谨证明了“每项减1均为3的倍数”这一性质。全文语言简洁准确,使用数学符号( )增强了专业性,同时保持了自然流畅的英文表达。结尾再次鼓励同学,呼应开头,使信件完整而亲切。整体而言,作文在150词内高效完成了题目要求的所有任务,展现了良好的数学理解力和英文写作能力。

本文地址: http://m.liuxuepaper.com/gaozhong/816764.html

[相关推荐]
上一篇:高三学生要不要参加体育锻炼 下一篇:英语作文:敬老是传统美德